2018年度高等学校科学研究优秀成果奖(科学技术)推荐项目公示

- 一、项目名称: 多表一体化信息采集关键技术及应用
- 二、推荐单位:天津科技大学

三、项目简介

1.项目所属技术领域

属于智能用电、电力信息、电力通信等领域。

2.技术内容

长期以来,电水气热的信息采集与管理都是自成体系,重复抄表造成了人力、物力的浪费;政府、企业难以实时掌握区域能耗情况,不利于节能降耗的推进;居民面临用能信息不明、缴费多卡多渠道等困扰,因此建立复用的多表一体化信息采集系统,实现跨行业用能信息资源共享,对于提升公共事业服务水平,建设节约型社会具有重要意义。

信息通信技术促进了多表一体化信息采集、分析与服务能力的提升,但仍存在以下瓶颈: 1) 电力线载波、无线是实现多表一体化信息采集的主要通信手段,但两者在设备、网络层面均未能形成有机整体,影响了采集的效果; 2) 多表采集终端存在设备厂家多、协议繁杂现状,导致协议转换开发、实施调试工作量大等问题,影响了推广应用的效率; 3) 信息化系统是实现多表一体化采集数据存储、分析与共享复用的基础,但如何提高系统信息接入能力与处理效率仍存在较大难度。

项目针对上述问题开展科技攻关,提出了适用于多表一体化信息采集的网络架构,研制了电力线与无线双模通信模块、协议转换器及能源计量管理信息化系统,提高了多表信息采集与应用的效率,形成了以下3个方面技术创新:

1)提出电力线载波与无线双模通信模块硬件设计结构。采用统一的基带信号处理单元提高载波、无线信道在链路连接、接入控制等方面的融合程度。2)提出电力线载波与无线通信通道切换与协议适配技术。基于对丢包率、信噪比等信道质量指标的综合评估,与预设的切换阈值进行比较,实现载波、无线信道之间的切换,提高通信可靠性。3)提出以多表数据为核心的用户用能情况实时综合分析及预测方法。采用多级缓存的方法构建多表合一的能源计量管理系统,解决大规模并发接入难题。

3.应用推广情况

项目成果已在江苏、北京、辽宁等多地应用,覆盖台区超 3000 个,用户近 70 万,抄收成功率超过 99%,并获得专利 21 项 (授权 15 项),软件著作权 1 项,SCI 等论文 27 篇,专著 1 项,技术创新及应用效果明显。项目成果近 3 年销售额超 1.2 亿元,利润近 3000 万元,极大降低了电水气热公司抄表运营管理成本,为政府、企业制定节能减排政策、策略提供数据支撑;为居民用能信息查询、多费合缴提供服务便利,经济社会效益十分显著。

四、主要完成单位及创新推广贡献、推广应用情况

单位名称	天津科技大学	排名	1
对太项目的贡献,			

负责项目总体技术路线制定、组织技术攻关与产品研发、组织应用实施;牵头开展总体技术方案设计与论证,参与多业务共享的电力多模通信网络架构搭建、数据服务组件架构及信息系统模型;开展多表数据融合、聚合及安全认证研究;协作开展多个系统研发、应用验证及示范工程建设

单位名称	深圳市国电科技通信有限公司	排	名	2
对本项目的贡献:				

牵头完成多表一体化信息采集总体架构设计,提出创新点 1 中电力线载波与无线 双模通信硬件设计结构,研制双模通信模块;牵头提出创新点 2 中电力线载波与无线 双信道切换机制与协议转换方法,研制协议转换器;与合作单位共同完成多表一体化 信息采集总体架构设计,参与创新点 1 中电力线载波与无线双模通信模块设计与研制。 与合作单位共同提出创新点 2 中基于信道质量的电力线载波与无线双信道切换技术, 提出基于附加子帧的数据转发方案,参与研制协议转换器。协助省公司开展项目成果 在多表一体化信息采集项目中的应用。

五、本项目成果曾获科技奖励情况

获奖项目名称	获奖时间	奖项名称	奖励等级	授奖部门(单位)
无				

本表所填内容是指本项目科技成果曾经获得的科技奖励,具体为:

- 1. 经登记的社会力量设立的科技奖励;
- 2. 厅、局、地级市设立的科技奖励;
- 3. 国际组织和外国政府设立的科技奖励;
- 4. 其他科技奖励。

六、主要知识产权证明目录

知识产权类别	知识产权具体名称	国家 (地区)	授权号	授权日期	证书编号	权利人	发明人	发明专利 有效状态
实用新型专利	抄表采集器	中国	ZL20122009503.5	2012.11.21	2530185	深圳市国电科技通信有限公司	刘庆扬、史兵、林大朋、 毛珊珊、王剑、张夕红、 何业慎、陆欣、武占侠	有效
实用新型专利	电力线宽带与无线结合的用 电信息采集设备	中国	ZL201320368486.5	2014.1.8	3353388	深圳市国电科技通信有限公司	陈勇、林大朋、李深龙、 何业慎、毛珊珊、程钟源、 张夕红、刘飞飞、洪海敏	有效
实用新型专利	电能采集器检测设备	中国	ZL201220416397.9	2013.4.10	2843730	深圳市国电科技通信有限公司	臧志斌、林大朋、陈勇、 邹亮、何业慎、毛珊珊、 武占侠、张夕红、陆欣、 刘飞飞、程钟源、孙丽莉	有效
实用新型专利	一种便携式电力线宽带设备 调测装置	中国	ZL201220416398.3	2013.3.27	2812249	深圳市国电科技通信有限公司	林大朋、臧志斌、陈勇、 史兵、陈蓉、何业慎、张 夕红、武占侠、贺竟辉、 孙丽莉、程钟源	有效
实用新型专利	光电一体智能家居接入设备	中国	ZL201320186675.0	2013.11.6	3247057	深圳市国电科技通信有限公司	林大朋、陈勇、史兵、何 斌、何业慎、武占侠、孙 丽莉、邹亮、穆霖、梁丽 华	有效
实用新型专利	电力线宽带与无线结合的用 电信息采集设备	中国	ZL201320368486.5	2014.1.8	3353388	深圳市国电科技通信有限公司	陈勇、林大朋、李深龙、 何业慎、毛珊珊、程钟源、 张夕红、刘飞飞、洪海敏	有效
实用新型专利	基于电力线宽带通信的手持设备	中国	ZL201320369063.5	2014.1.8	3353252	深圳市国电科技通信有限公司	史兵、杨树、高杰、刘飞 飞、张夕红、何业慎、巫 房贵、何慧娟、程钟源	有效

ī -			_					
实用新型专利	一种光电一体的采集器	中国	ZL201320369053.1	2014.1.8	3353378	深圳市国电科技通信有限公司	林大朋、陈勇、史兵、梁 丽华、何业慎、武占侠、 孙丽莉、何斌、邹亮、穆 霖	有效
实用新型专利	一种微功率无线通信模块自 动批量检测系统	中国	ZL201520448634.3	2016.1.6	4915605	深圳市国电科技通信有限公司	王伟鹏、臧志斌、林大朋、 史兵、何业慎、陆欣、李 云峰、程钟源、武占侠、 刘庆扬、张月保	有效
发明专利	融合电力线和无线通信的双 模通信芯片及采集设备	中国	ZL201310252878.X	2016.12.28	2323908	深圳市国电科技通信有限公司	林大朋、武占侠、巫房贵、 何业慎、孙丽莉	有效
发明专利	电力线与无线通信混合自动 组网方法	中国	ZL201210327300.1	2016.5.4	2057048	深圳市国电科技通信有限公司	杨树、林大朋、陈勇、史 兵、程钟源、何业慎、毛 珊、张夕红、陆欣、孙丽 莉	有效
发明专利	在数据链路层实现用电信息采集系统数据传输的方法	中国	ZL201310256999.1	2016.12.28	2324056	深圳市国电科技通信有限公司	臧志斌、林大朋、史兵、 陆欣、何业慎、洪海敏、 巫房贵、武占侠、邹亮、 何慧娟	有效
发明专利	用无线通信系统动态分配的 自适应时分双工系统及方法	中国	ZL201210562823.4	2016.8.3	2150041	深圳市国电科技通信有限公司、国网电力科学研究院、国 家电网公司	林大朋、李丽丽、欧清海、 何清素、富志伟、贺金红、 曾令康	有效
发明专利	一种离散窄带实现宽带数据 传输的方法	中国	ZL201210308073.8	2016.7.20	2147465	深圳市国电科技通信有限公司、国网电力科学研究院、国家电网公司	何清素、李丽丽、李祥珍、 臧志斌、林大鹏、欧清海、 曾令康、贺金红、李俊正、 廖从研	有效
实用新型专利	电力线与无线结合的集中器	中国	ZL201220688562.6	2013.9.11	3162769	深圳市国电科技通信有限公司	陈勇、杨树、臧志斌、林 大朋、史兵、刘庆扬、王 剑、程钟源、龙寿阳、党 宁	有效

发明专利	一种基于 OFDM 的电力无线 传输的方法	中国	ZL201210437611.3	2016.8.10	2160529	深圳市国电科技通信有限公司、国网电力科学研究院、国 家电网公司	何清素、贺金红、臧志斌、 林大朋、富志伟、李丽丽、 余斌	有效
实用新型专利	一种 GIS 声电联合局部放大 仿真检测系统及其检测方法	中国	201710579582.7	2017.7.17		天津科技大学	张翼英、梁琨、何业慎、 白宇峰、于洋、侯荣旭	有效
实用新型专利	基于 MQTT 协议对智能硬件 装置的控制方法	中国	201810315181.5	2018.4.10		天津科技大学	张翼英、梁琨等	有效
实用新型专利	一种电力线载波与无线的 MAC 层混合组网方法	中国	201710604524.5	2017.7.24		天津科技大学	张翼英、张浩、刘军雨、 何业慎、梁琨、侯荣旭	有效
发明专利	一种面向配用电业务的 PTN 承载多形态无线组网方法	中国	201710806487.6	2018.2.14		天津科技大学	张翼英、梁琨等	有效
实用新型专利	一种 IEEE802.22WRAN 动态 信任管理模型及其与感知循 环的结合方法	中国	201711320467.4	2017.12.12		天津科技大学	王聪、张翼英、梁琨、杨巨成	有效
实用新型专利	一种碎片化知识智能化聚合 方法	中国	201810013215.5	2018.1.8		天津科技大学	梁琨、张翼英、史艳翠、 王聪、叶子、楼贤拓	有效
实用新型专利	一种基于图像处理的智能化 视频监测系统	中国	201820637326.9	2018.5.2		天津科技大学	梁琨,张翼英,李正南, 王聪,于洋,刘飞,庞浩 渊,张好	有效

四、主要完成人情况表

姓名	张翼英	排 名	1	技术职称	正高
工作单位	天津科技大	学		完成单位	天津科技大学
曾获科技奖励情况				可智能电网应用的 是公司,负责人;	的关键技术研究与应用实

本人对本项目技术创造性贡献:(限 300 字)

本人负责项目总体技术路线制定、组织技术攻关与产品研发、组织应用实施;开展总体技术方案设计与论证,参与多业务网络架构及面向数据共享的信息模型设计,参与多模通信方式方法研究,并 开展多个系统研发、应用验证及示范工程建设;

姓名	欧清海	排名	2	技术职称	正高
工作单位	北京国电通	鱼网络技术有	限公司	完成单位	北京国电通网络技术有 限公司
曾获科技奖励情况	年中国电力]科技进步奖	三等奖,排名	名: 3。"配用电流	充的研究与应用"获 2011 通信综合接入与网络管理 奖三等奖,排名: 1。

本人对本项目技术创造性贡献:(限 300 字)

本人提出多表一体化信息采集网络架构,牵头攻克双模通信信道切换、协议转换关键技术,研制 协议转换器。

姓 名	刘柱	排名	3	技术职称	副高
工作单位	深圳市国电	科技通信有	限公司	完成单位	深圳市国电科技通信有 限公司
曾获科技奖励情况	奖三等奖,	排名: 5。"	面向能源互即		3015年北京市科技进步 线通信关键技术及应用" 名:2。

本人对本项目技术创造性贡献:(限 300 字)

本人参与多表一体化信息采集网络架构设计,参与双模通信信道切换、协议转换关键技术研究,协助研制协议转换器,参与应用示范。

姓名	何业慎	排名	4	技术职称	高级工程师
工作单位	深圳市国电	l 科技通信有	限公司	完成单位	深圳市国电科技通信有 限公司
曾获科技奖励情况	2015 年获作 2014 年获年 2012 年获	言产集团度优 有瑞集团优秀 国电通公司优	论文奖和"分	先进科技工作者	"称号;

本人对本项目技术创造性贡献:(限 300 字)

本人参与多表一体化信息采集网络架构设计,参与无线信道多模协议转换研究术研究,协助研制 协议转换器,参与应用示范与示范工程建设。

姓名	梁琨	排	名	5	技术职称	中级
工作单位	天津科技大	学			完成单位	天津科技大学
曾获科技奖励情况					可智能电网应用的 是公司,负责人;	的关键技术研究与应用实

本人对本项目技术创造性贡献:(限 300 字)

本人参与多表一体化智能协议转换研究,参与数据信息聚合研究,协助研制协议转换器,参与应用示范与示范工程建设。

	姓 名	林大朋	排	名	6	技术职称	副高
	工作单位 深圳市国电科技通信有限公司				完成单位	深圳市国电科技通信有限公司	
曾获科技奖励情况					面向能源互耳	镁网的新型电力	线通信关键技术及应用"

本人对本项目技术创造性贡献:(限 300 字)

本人提出项目总体技术路线,主持电力线载波与无线双模通信模块结构设计,提出双模通信信道 切换与协议转换技术方案;参与"多表合一"能源计量管理系统数据缓存、分析处理等关键技术研究。

姓 名	李祥珍	排	名	7	技术职称	正高
工作单位	深圳市国电科技通信有限公司			限公司	完成单位	深圳市国电科技通信有限公司
曾获科技奖励情况	"高速率电力线载波通信技术在电力系统低压配电网中应用的研究"获 2004年国家科技进步奖二等奖,排名:1。"智能用电双向交互服务关键技术研究、开发及应用"获 2010年国家电网公司科技进步奖一等奖,排名:4。					

本人对本项目技术创造性贡献: (限 300 字)

本人参与项目技术方案总体设计,提出电力线载波与无线双模通信技术路线,参与"多表合一" 能源计量管理系统与用户交互技术研究,提出系统总体架构与功能架构。

姓名	王祥 排 名	8 技术职称	中级
工作单位	深圳市国电科技通信有限	公司 完成单位	深圳市国电科技通信有限公司
曾获科技奖励情况	无		

本人对本项目技术创造性贡献: (限 300 字)

参与电力线载波与无线双模通信模块功能设计;参与"多表合一"能源计量管理系统数据缓存、分析处理等关键技术研究。参与应用示范与示范工程建设。

姓 名	何清素	排	名	9	技术职称	高级工程师
工作单位	国网信息通信产业集团有限公司			有限公司	完成单位	深圳市国电科技通信有限公司
曾获科技奖励情况 2017年获北京市科学进步奖三等奖二等奖1项;2010年~2016年获国家						

本人对本项目技术创造性贡献:(限 300 字)

参与项目多模通信技术方案设计,参与电力线载波与无线通信方法研究,参与"多表合一"能源计量管理系统与用户交互技术研究。

姓名	王聪 排 名	10	技术职称	讲师
工作单位	天津科技大学		完成单位	天津科技大学
曾获科技奖励情况	无			

本人对本项目技术创造性贡献:(限 300 字)

参与多表一体化智能协议转换研究,参与数据信息聚合及数据防护研究,对多表融合的数据隐私 及安全认证开展研究,参与应用示范与示范工程建设